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Abstract

Bayesian approaches to learning and estimation have played a significant role in the Statistics lit-
erature over many years. While they are often provably optimal in a frequentist setting, and lead
to excellent performance in practical applications, there have not been many precise characteri-
zations of their performance for finite sample sizes under general conditions. In this paper we
consider the class of Bayesian mixture algorithms, where an estimator is formed by constructing a
data-dependent mixture over some hypothesis space. Similarly to what is observed in practice, our
results demonstrate that mixture approaches are particularly robust, and allow for the construction
of highly complex estimators, while avoiding undesirable overfitting effects. Our results, while
being data-dependent in nature, are insensitive to the underlying model assumptions, and apply
whether or not these hold. At a technical level, the approach applies to unbounded functions, con-
strained only by certain moment conditions. Finally, the bounds derived can be directly applied to
non-Bayesian mixture approaches such as Boosting and Bagging.

1. Introduction and Motivation

The standard approach to Computational Learning Theory is usually formulated within the so-called
frequentist approach to Statistics. Within this paradigm one is interested in constructing an estima-
tor, based on a finite sample, which possesses a small loss (generalization error). While many algo-
rithms have been constructed and analyzed within this context, it is not clear how these approaches
relate to standard optimality criteria within the frequentist framework. Two classic optimality cri-
teria within the latter approach aminimaxityandadmissibility which characterize optimality of
estimators in a rigorous and precise fashion (Robert, 2001). Minimaxity essentially measures the
performance of thbestestimator for thavorstpossible distribution from some set of distributions.
Admissibility is related to the extent to which an estimator uniformly dominates all other estimators.
We refer the reader to Robert (2001) for precise definitions of these notions, as they play no role
in the sequel. Except for some special cases (e.g., Yang, 1999), it is not known whether any of the
approaches used within the Machine Learning community lead to optimality in either of the above
senses of the word. On the other hand, it is known that under certain regularity conditions, Bayesian
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estimators lead to either minimax or admissible estimators, and thus to well-defined optimality in
the classical (frequentist) sense. In fact, it can be shown that Bayes estimators, or limits thereof,
are essentially the only estimators which can achieve optimality in the above senses (Robert, 2001).
This optimality feature provides strong motivation for the study of Bayesian approachdsin a
guentistsetting.

While Bayesian approaches have been widely studied, there have not been generally applicable
finite-sample bounds in the frequentist framework. Recently, several approaches have attempted to
address this problem. In this paper we establish finite sample data-dependent bounds for Bayesian
mixture methods, which together with the above optimality properties suggest that these approaches
should become even more widely used.

Consider the problem of supervised learning where we attempt to construct an estimator based on
a finite sample of pairs of exampl&= {(X1,Y1),...,(%n,Yn)}, X € X, Y; € Y, each pair drawn
independently at random according to an unknown distribytiefY). Let A be a learning algo-

rithm which, based on the sameselects a hypothesis (estimatbrfrom some set of hypotheses

H . Denoting by/(y,h(x)) the instantaneous loss of the hypothédsie wish to assess the true loss

L(h) = Exyf(Y.h(X)  ((X.Y) ~ ).

In particular, the objective is to providalgorithm and data-dependenbounds of the following
form. For anyh € H andd € (0, 1), with probability at least % 5,

L(h) <A(h,S+A(h,S ),

where/A(h,S) is some empirical assessment of the true loss MhdS ) is a complexity term. For
example, in the classic Vapnik-Chervonenkis framework (Vapnik and Chervonenkis, AJii19)

is the empirical error(1/n) ¥, ¢(Y;,h(X)), andA(h,S,3) depends on the VC-dimension bf

but is independent of both the hypothekisind the sampl&. By algorithm and data-dependent
bounds we mean bounds where the complexity term depends on both the hypothesis (chosen by the
algorithmA) and the sampl&.

The main contribution of the present work is the extension of the PAC-Bayesian framework of
McAllester (1999, 2003) to a rather unified setting for Bayesian mixture methods, where different
regularization criteria may be incorporated, and their effect on the performance can be easily as-
sessed. Furthermore, it is also essential that the bounds obtaingitharesion-independergince
otherwise they yield useless results when applied to methods based on high-dimensional mappings,
such as kernel machines. Similar results can also be obtained using the covering number analysis
by Zhang (2002a). However the approach presented in the current paper, which relies on the direct
computation of the Rademacher complexity, is more direct and gives better bounds in many cases.
The analysis is also easier to generalize than the corresponding covering number approach. More-
over, our analysis applies directly to other non-Bayesian mixture approaches such as Bagging and
Boosting. On a technical level, our results remove a common limitation of many of the bounds in the
learning community, namely their assumption of the boundedness of the underlying loss functions.
This latter assumption is usually inappropriate for regression, and is often inapplicable to classifi-
cation problems, where the-01 loss function is replaced by a convex upper bound (see Section
6.4).

The remainder of the paper is organized as follows. We begin in Section 2 with a description of
the decision theoretic framework for Bayesian learning. We then move on in Section 3 to discuss
mixture distributions, and recall some basic properties of convex functions. Section 4 presents a new
uniform convergence result for unbounded loss functions, and Section 5 then establishes bounds
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on the (Rademacher) complexity of classes of functions defined by convex constraints. Section 6
applies these general results to several cases of interest, establishing data-dependent bounds. We
conclude in Section 7 and present some technical details in the appendix.

Before moving to the body of the paper, we make several comments concerning notation. Unless
otherwise specified, the natural base of the logarithm is used. We denote random variables by
upper-case letters and their realizations by lower case letters. Expectations with respect to a random
variableX are denoted b¥x. Vectors will be denoted using boldface.

2. A Decision Theoretic Bayesian Framework

In the decision theoretic Bayesian setting we consider three spaces. An inpuiXspacection
spaceA and an output spacé. Consider a (deterministic) acti@a= a(x) performed upon observ-
ing inputx, and let the loss functiofi: Y x A — R, be given by/(y,a(x)). Letp be a probability
measure defined ovet x Y. The Bayes optimalecision rulea = a, is given by minimizing
Exv¢(Y,a(X)), namely

Exyt(Y,au(X)) < Inf Exy((Y,a(X))  ((X,¥) ~ W),

where, for ease of notation, we suppressititependence in the expectation.

In general, we do not have accessitbut rather observe a sam@e= {(X,Y)}L. X e X, YieY.
Leta=a(x,S) be an action selected based on the sarBjpled the current input. We refer to such
a sample-dependent action asadgorithm Thesample dependeiiss ofa is given by

R(l.l., a, S) = EX’YE(Y, a(X, S))

We are interested in the expected loss of an algorithm averaged over s&nples

R(a) =ER(1a9) = [Ra9dus),

where the expectation is taken with respect to the sa®giawn i.i.d. from the probability measure
. If we consider a family of measur@swhich possesses some underlyprgpr distribution (),
then we can construct the averaged risk function with respect to the prior as,

r(na) = EnR(ka) = [ duSdn( [ R(w.a Sdnius)

where du(S)dmyy)
TU
dn(p[S) = /—u,
Judu(S)dm(y)
is the posterior distributionon thep family, which induces a posterior distribution on the sample
space asts = Eq gl An action (algorithm)a = ag minimizing the Bayes risk(1t, a) is referred
to as aBayes algorithmnamely
r(mag) < inLr(Tga).
ac

In fact, for a given prior, and a given samde the optimal algorithm should return the Bayes
optimal predictor with respect to the posterior measw.e

For many important practical problems, the optimal Bayes predictor is a linear functional of the
underlying probability measure. For example, if the loss function is quadratic, nd(yedyx)) =
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(y—a(x))?, then the optimal Bayes predictag(x) is the conditional mean of namelyE[Y |x]. For
binary classification problems, we can let the predictor be the conditional probapility= pu(Y =
1x) (the optimal classification decision rule then corresponds to a test of whegther> 0.5),
which is also a linear functional qf. Clearly if the Bayes predictor is a linear functional of the
probability measure, then the optimal Bayes algorithm with respect to therpisagiven by

JuBn(X)du(S)dm(p)
Judu(S)dm(p)

In this case, an optimal Bayesian algorithm can be regarded as the predictor constructed by averag-
ing over all predictors with respect to a data-dependent poste(jio®). We refer to such methods
asBayesian mixture methoddVhile the Bayes estimatag(x,S) is optimal with respect to the

Bayes riskr(11,a), it can be shown, that under appropriate conditions (and an appropriate prior) it is
also a minimax and admissible estimator (Robert, 2001).

as(x,9) = /u a,(X)dT((S) = (1)

In general,a, is unknown. Rather we may have some prior information about possible models
for a,. In view of (1) we consider a hypothesis spade and an algorithm based on a mixture

of hypothesesh € H. This should be contrasted with classical approaches where an algorithm
selects a single hypothedisfrom H. For simplicity, we consider a countable hypothesis space
H = {hy,hy,...}, and a probability distributiofiq; }7_, overH , namelyq; > 0 andy ; gj = 1t we
introduce the vector notatian= (qi,0p, ...) andh = (hy, hy,...), and define th@robability simplex

I'Iz{q: q; >0, quzl}-
J

Further, denote

W00 £ @ht) = S anco  @en)
J:

Observe that in generd}(x) may be a great deal more complex that any single hypothesksor
example, ifh;(x) are non-polynomial ridge functions, the composite predifteorresponds to a
two-layer neural network with universal approximation power (Leshno et al., 1993).

A main feature of this work is the establishment of data-dependent bountd§fen the loss of

the Bayes mixture algorithm. There has been a flurry of recent activity concerning data-dependent
bounds (a non-exhaustive listincludes Bartlett et al., 2002b, Bousquet and Chapelle, 2002, Koltchinksii
and Panchenko, 2002, Shawe-Taylor et al., 1998, Zhang, 2001). In a related vein, McAllester (1999,
2003) provided a data-dependent bound for the so-called Gibbs algorithm, which selects a hypoth-
esis at random frorhl based on the posterior distributiorih|S). Essentially, this result provides a
bound on the average errgr ;L (h;) rather than a bound on the error of tieeraged hypothesis
L(¥j9jh;), which may be much smaller. Later, Langford et al. (2001) extended this result to a mix-
ture of classifiers using a margin-based loss function. A more general result can also be obtained
using the covering humber approach described by Zhang (2002a). Finally, Herbrich and Graepel
(2001) showed that under certain conditions the bounds for the Gibbs classifier can be extended
to a Bayesian mixture classifier. However, their bound contained an explicit dependence on the
dimension (see Thm. 3 in Herbrich and Graepel, 2001).

Although the approach pioneered by McAllester (1999, 2003) came to be known as PAC-Bayes, this
term is somewhat misleading since an optimal Bayesian method (in the decision theoretic frame-
work outline above) does not average over loss functions but rather over hypotheses. In this regard,

1. The assumption that the hypothesis space is countable can be removed. We retain it, however, for ease of presentation.

842



GENERALIZATION ERRORBOUNDS FORBAYESIAN MIXTURE ALGORITHMS

the learning behavior of a true Bayesian method is not addressed in the PAC-Bayes analysis. In this
paper, we attempt to narrow the discrepancy by analyzing Bayesian mixture methods, where we
consider a predictor that is the average of a family of predictors with respect to a data-dependent
posterior distribution. Bayesian mixtures can often be regarded as a good approximation to truly op-
timal Bayesian methods. In fact, we have argued above that they are equivalent for many important
practical problems.

3. Mixture Algorithms with Convex Constraints

A learning algorithm within the Bayesian mixture framework uses the sa@ifleselect a distri-
bution g over H and then constructs a mixture hypothe&js In order to constrain the class of
mixtures used in forming the mixtur we impose constraints on the mixture veatprLet g(q)
be a non-negative convex function@find define for any positiva,

Qa={genN: g(q) <A},
Fa={fq: fq(x) =(a,h(x)), a € Qa}. (2)

In subsequent sections we will consider different choicegfq¥, which essentially acts as a regu-
larization term. Finally, for any mixturé, we define the loss by

L(fq) = Ex (Y, fq(X))

and the empirical loss incurred on the sample by
n

L(fq) = (1/n) Zlﬁ(Yia fa(Xi))-

In the sequel we use the notatiBpf = %zi”:l f(X), andEs stands for an average over the sample
Swith respect to the distributiop(S).

For future reference, we formalize our assumptions concegiiqy
Assumption 1 The constraint function(g) is convex and non-negative.
An important tool which is used extensively in this paper is the theory of convex duality (Rock-

afellar, 1970, Boyd and Vandenberghe, 2002). We begin by discussing some issues and introduce
several useful results.

3.1 Some Results on Convex Functions and Duality

Let f(x) denote a convex function, namefyis defined over a convex domaliiand for any 0<
0 <1landx,yeK
f(Bx+ (1—0)y) < 8f(x)+(1—0)f(y).

Definition 1 For a function f, we define

us (X) = sup 3 —f(rn)|.

rek

The following result follows directly from a Taylor expansion.
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Lemma 2 Assume f possesses continuous first order derivatives. Then fordll g

_qd [ f(r+6x)—f(r—6x)
us(x) < sup O q—{ .
) rec1  d6 2q

Moreover, if f possesses continuous second order derivatives, then

2

1 d
us (X) < = sup —— f(r +6x).
100 <5 SUp G (7 +69

Proof For anyB € R, lets(0) = [f(r +6x) + f(r —6x)]/2— f(r). Observe tha$(0) = s'(0) = 0.

From the generalized mean value Theorem (e.g., Theorem 5.15 in Apostol 1957) it is known that
for two functionsh andg, which are continuously differentiable ovi; 1], [h(8) —h(60)]d'(81) =

[9(8) — g(B0)]f'(61), for any 6,60 € [0,1] and someb; € [6p,0]. Replacingh by s and setting

g(8) = 69, g > 1, we infer that there exists & < (0,1) such thats(1) = g(el)/(qeffl). If s

is continuously second order differentiable, then a second order Taylor expansion with remainder
shows that there existsa € (0,1) such thas(1) = s’(62)/2. O

For any functionf defined over a domaild we define the conjugaté’ by

f(y) = sup({y,x) — f(x)),
xeK
noting thatf*(-) is always convex (irrespective of the convexityfdf)). The domain off* consists
of all values ofy for which the supremum is finite, namely the valuey &r which (y,x) — f(X) is
bounded from above oK.

A simple consequence of the definition ©f is the so called=enchel inequalitywhich states that
for all x andy
{y,x) < £(x)+ 5(y). ®3)

4. A Concentration Inequality for Unbounded Functions

In general, loss functions used in applications cannot be bounded a-priori. The starting point for our
analysis is a concentration result similar to Theorem 1 of Koltchinksii and Panchenko (2002) (see
also Theorem 8 of Bartlett and Mendelson, 2002). The main advantage of the current formulation
is that the functions if- are not assumed to be bounded. This is particularly useful in the context
of regression. The proof is given in the appendix.

Theorem 3 Let F be a class of functions mapping from a domainto R, and let{X} ; be
independently selected according to a probability measure P. Assume that there exists a positive
number MF ) such that for allA > 0:

logEx supcosh2A f (X)) < A2M(F )?/2.
feF

Then, for any integer n andl< o < 1, with probability at leastL — & over samples of length n, every
f € F satisfies

Ef(X) < Enf(X)+Essqu{Ef(X) —Enf(X)} +M(F) M'
fe
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We note that the dependenceMfon F is made explicit, as it will play a role in the sequel. The
bound can be slightly improved when the functiond-irare bounded.

Corollary 4 Let the conditions of Theorem 3 hold, and in addition assume that

sup|f(x) — F(x')| <M(F).
fx,x’
Then

log(1/9)
n

Ef(X)< Enf(X)+ESsqu{Ef(X) —Enf(X)} +M(F)
fe

Proof In the proof of Lemma 17 in the Appendix, note that gup|c’(x1) —¢'(X})| < Asup, [ f(X) —
f(x')] <AM. Now instead of boundingx, exp(c'(X1) — Ex;C'(X{)) using the symmetrization ar-
gument as in Lemma 17, we may apply Chernoff’s bound which leads tBy]@xp(c'(X1) —
Ex;C/(X{)) < A2M2/8. O

In spite of the slightly improved bound in the case of bounded functions, we will use the bound of
Theorem 3 for generality.

A great deal of recent work has dealt with Rademacher complexity based bounds. Defmtg'by
independent Bernoulli random variables assuming the vatiewith equal probability. For a set
of ndata pointsX" = {X }I'; € X", we define the data-dependent Rademacher complexity as

Ry(F) =Eg [sup} ioi f(X)]| x”] ,

feF N&

whereo = (01,...,0,). The expectation oR,(F ) with respect tax™ will be denoted byR,(F ).

Note thatR,(F ) differs from the standard Rademacher complefiyF ) which is defined using

the absolute valug1/n) 3, oi f (X)| in the argument of the supremum (van der Vaart and Wellner,
1996). The current version of Rademacher complexity has the merit that it vanishes for function
classes consisting of single constant function, and is always dominated by the standard Rademacher
complexity. Both definitions agree for function classes which are closed under negation, namely
classed- for which f € F implies—f e F.

Using standard symmetrization arguments (for example, Lemma 2.3.1 of van der Vaart and Wellner,
1996) one can show that

Exn SUp{Ef(X) — Enf(X)} < 2Ry(F).
feF

It is often convenient to use the Rademacher average due to the following Lemma.

Lemma5 Let{g;(8)} and{h;(6)} be sets of functions defined for 8lin some domai®. If for
alli, 8, 0, gi(8) —gi(6)| < |hi(8) —hi(8')], then for any function (,8), x € X1, and probability
distribution overX,

0O 0O

EoEx sup{c(X,e) + _ioigi(e)} < EgEx sup{c(x, 0) + iOi hi(e)} .
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Proof By induction. The result holds for=0. Thenwhem=k+1

k+1
E01 ,,,, O'k+1EX Sup{C(X,e) + zlo-lgl(e)}
0 i=

c(X,61) +¢(X,0,) 6/(60) +6(82) , Gi1(6) gm (62) }

k
=Eq,.. Ex sup ’ =+ Zlo-
01 Ok el’ez{ 2 pA | 2

c(X,81) +¢(X,8 K gi(01)+gi(0 8 (8)
B o Ex Sup{ (X,8)+o 2)+21°ig'( +8(8) , 191(%) ~ Bons(® \}
91792 i=
c(X,01) +c(X,0 K g8 (0 i 1(81) — hiy1(0
< Eo,. oEx SUP (X,81) +c(X, 2)+ 0i9|( 1) +0i( 2)+! k+1(01) — i1(82)|
6.6, 2 Z 2 2

k
= Ecl ..... GkE0k+1EX SUp{ (X 9) +Gk+1hk+1 + Zlo-lgl }

k
< Eq;.....0¢Eoi 1 Ex SUD{ (X, 0) + ok1hk1(6) + Zol }
The last inequality follows from the induction hypothesis. 0

Remark 6 The above lemma is a refined (asygimmetri¢ version of the Rademacher process com-
parison theorem (Theorem 4.12 of Ledoux and Talgrand, 1991). The proof presented here is also
simpler.

Let {@} be a set of functions, each characterized by a Lipschitz congtanamely|@(6) —
@ (0)| <vi|6—&'|. The following consequence is immediate from Lemma 5.

Theorem 7 Let{@}]._, be functions with Lipschitz constarys then

Ec{sur) n Oi(ﬂ(f(xi))} < Ec{sur) n Oiyif(xi)}-
feF = feF =

Let ¢(y, f(x)) be a loss function and set(f(xi)) = (@ o f)(yi,x) = £(yi, f(X)). Assume that

@ (f(X)) is Lipschitz with constank, namely|@ (f(xi)) — @ (f'(xi)| < k|f(xi) — f'(x;)| for all i.

Let L consist of functions fron¥ x X, defined byLg ={g: g=@o f, f € F }, wheregis
Lipschitz with constank. Then we find from Theorem 7 th&,(Lg) < KR,(F ). We note in
passing that by using Theorem 7 we gain a factor of 2 compared to the bound in Corollary 3.17 of
Ledoux and Talgrand (1991) and do away with their requirementgh@) = 0.

SettingL(f) = Exy/(Y, (X)) andL(f) = Ex/(Y, f(X)), we obtain the following bound for the
expected loss.

Theorem 8 LetF be a class of functions mapping from a domXirto R, and let{(X,Y;)},,
Xi € X, Y; € R, be independently selected according to a probability measure P. Assume there
exists a positive real number (% ) such that for all positive\

logEx vy supcosh2AL(Y, f(X))) < A2M(F )?/2,
feF
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where for every fe F, @ (f(X)) = (o f)(¥i,X) = £(Y;, f(X)) is Lipschitz with constarnt(F ).
Then with probability at least — & over samples of length n, evenefF satisfies

L(1) < £(1) 4 2k(F )R(F ) 4 M(F )y 20930

5. The Rademacher Complexity for Classes Defined by Convex Constraints

We consider the class of functiofg defined in (2) through a convex constraint functgin). We
wish to compute the Rademacher compleRfyFa). Denoting byg* the conjugate function tg,
we have from (3) that for alf andz

(d,2) <9(q) +97(2).

Settingz = (A\/n) 3L, 0ih(X;), we conclude that for any positive

Ecqselée{%éoi (q,h(N)>} < % {A+ Eog” <(>\/n) iiﬁi*l(%)) }

Since this inequality holds for evely> 0, we obtain the following upper bound on the Rademacher
complexity,

Ro(F) < inf {’§+ TEog’ ((A/n) __iioihom) } (4)

We note that a similar use of convex duality was made in a related context by Seeger (2002)

In general, it may be difficult to compute the expectatiogofvith respect ta. For this purpose we
make use of the following Lemma. Note tigitj) > 0 implies thatg*(0) = sup,cq,{—9(q)} <O.

Lemma 9 For any a> 0 and convex function f such thatdf) <0,

Eqf (a‘ioih(xi)> < _iuf(ah(xi)). (5)

Proof We prove the claim by induction. For= 1 we have

Eof (a0n(x1)) = 3 [f(ah(x) + F(~ah(x,))] — 1(0) + £(0)
< ur(ah(x1)),
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where we have usefl0) < 0. Next, assume the claim holds forand leto, = {01,...,0n}. We
have

n+1
Eo,Eoy,, f <a210ih(Xi)>
= %Eon [f < i_i (%) +ah(Xny1 ) +f ( h(xi) — ah(xn+1)>]
= %Eon [f ( i_i (%) +ah(Xns1 ) +f ( h(xi) — ah(xn+1)>]
—Eqf (a_io.h >+E0 ( icr.h )

< uf(ah(Xns1)) +_Zluf(ah(x )

a
a

where the last step used the definitiorupfand the induction hypothesis. O
Using (4) and Lemma 9 we find that

Ru(Fa) < inf {%%_iu@(@/n)h(m)}. ©)

A>0

6. Data-dependent Bounds

Consider the loss bound derived in Theorem 8. This bound requires prior knowledge of the constant
A, characterizing the cladsa. In general, we would like to be able to establish a bound which is
data-dependennamely does not assume any such a-priori knowledge. We begin by rewriting the
bound of Theorem 8 in a slightly different form. For afy= (q,h), g € Qa, with probability at
least 1- 0
~ 2log(1/d

L(fa) < £(fg) + 2K(A)Y(A) + M(a) 2SR @

where we slightly abuse notation, settin@) = k(Fa), M(A) = M(Fa) and where
Y(A) = Ra(Fa).

Observe tha{A) is monotonically increasing iA. Either (4) or (6) may be used to upper bound
Y(A). For example, using (4) we have that

Y(A) < Esinf {/f+ TEog' ((A/n) ,_ﬁloihoq)) }

Eliminating the dependence énin (7) leads to the following fully data-dependent bound.

Theorem 10 Let the assumptions of Theorem 8 hold. Consider two paramegessOgand s> 1,
and letd(q) = smax(9(q),do). Then with probability at least — & for all fq, q € I,

L(fq) < L(fq) + 2k(3(a) V(G(@)) + M(G(Q))\/ 4log '095<s@<q>/ngo> +2l0g(1/3)
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Proof First, observe thag(q)/go > s, so that the final term is always well-defined. K& }>; and
{pi}i2 be a sets of positive numbers such tfigh = 1. From Theorem 8 and the multiple-testing
Lemma (essentially a slightly refined union bound) we have that with probability at leadtfar

all Ay andq € Qa,,

L(fq) < £(fg) + 26(A)YIA) + M(A)y 229/ PO) ®)
Next, pickAj = gos andp; = 1/i(i+1), i = 1,2,... (note thaty; pi = 1). For eachy letiq denote
the smallest index for which;, > g(q). We haveiq <10gs(G(d)/do), andA;, < §(q). Substituting
Pi, = 1/iq(1+iq) we have that lofl/pi,) < 2log(iq + 1) < 2loglog,(sj(d)/go). Combing these
bounds with (8), and keeping in mind the monotonicityYgf\), we have that with probability at
least 1- & for all g

4loglog,(sg(q)/go) +210g(1/3)
n

)

L(fq) < L(fq) +2(5(a)) Y(§(a)) + M(@(q))\/
which concludes the proof. O

Note that the parametep essentially ‘sets the scale’ fgfq). For example, ify is selected so that
9(q) < go for all g, we get a data-independent bound, whgyeeplacesy(q). We also observe that
the bounds derived in Theorem 10 alata-dependenaind can thus be used in order to select the
optimal posterior distributiog.. We comment on this further in Section 6.1.

We observe that the bounds in Theorem 10 yields rates which (anel/z). More recent techniques

based on more refined concentration inequalities (e.g. Boucheron et al. 2003, Bartlett et al. 2002a,
Mannor et al. 2003) are sometimes able to achieve faster rates of convergence under favorable
circumstances. For example, faster rates are possible if the empirical error is small. We leave the
extension of our results to these situations to future work.

6.1 Entropic Constraints

Assume adata-independenprior distributionv is assigned to all hypotheseskhh, namelyv; > 0
andy;vj =1, wherev; = v(h;). We setg(q) to be the Kullback-Leibler divergence qffromv.

g9(a) =D(alv) ; D(alv) =} agjlog(q;/vj).
J

In this case, the conjugate functigh can be explicitly calculated yielding

g*(z):longjeZJ’.
]

Note that
2 / zjvjz’jzezl*eii
3629 (z+06z) < W
It is easy to see that ,
2;2%9*(2+ 6z) < |Z|I2.

Using Lemma 2, we havey: (h(x;)) < ||h(xi)||2/2, and (6) can then be applied. However, a slightly
better bound can be obtained with a more refined derivation. Using (4) we can derive an upper bound
on the Rademacher complexity, captured in the following Lemma.
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Lemma 11 The empirical Rademacher complexityFef using dq) = D(q||v) is upper bounded

as follows:
Rn(Fa) < <\/7> sup, /= Zlh

Proof From (4) and the expression fgf we have that for ank > 0

170 1 A
qseléa{ﬁi;oi<q,h(>(i)>} < X {A—Hog;vjexp [ﬁ Zoihj (Xi)] }

Taking the expectation with respectde= (01, . . .,0y), and using the Chernoff bourtth {exp(y; gia) } <
exp(yia?/2), we have that for ank > 0

Ra(Fa) < X{AJFEOIOQZV exp[ Zoihj(xi)]}
a)
(g %{A+suplogE0exp[ IZO'ihj(Xi)]}
g%{A+suplogexp[ 2 | hj(;@z]}
A
X+ suth

where(a) made use of Jensen’s inequality afid used Chernoff's bound. Minimizing the r.h.s.
with respect to\, we obtain the desired result. O

Using this result in Theorem 10 we obtain the main result of this section.

Theorem 12 Let the conditions of Theorem 10 hold, and set

n

~ 1
d(a) =smaxD(q|[v),90) : Ay = \/ Essup} hj(Xi)%.
ii=
Then for all §, g € N, with probability at leastl — 9,

L(fq) < L(fq) + 284 K(6(q)) ZQT(Q) M) \/ 4log IO%(SQ(Q)/ngO) T200g13) g

Note that if the functiong; are uniformly bounded, sgh;(x)| < c, thenAy <c.

It is instructive to compare the results of Theorem 12 to those obtained by McAllester (2003) using
the Gibbs algorithm. The latter algorithm selects a hypotheatsandom from the posterior distri-
bution g and forms a prediction based tnMcAllester (2003) establishes the following bound on
the expected performance of the randomized predictor. With probability at leastdr all g € I

EthL(h)gEthI:(h)+\/ (q|]v)+|r21r(]1/i)+lnn+2 (10)

When the hypotheses and losses are bounded in value (as assumed in McAllester, 2003), we see
that, up to small numerical constants, the leading terms in the complexity penalties in (9) and (10)
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are very similar. While the bound in (10) contains an extra logarithmic term the bound in

(9) contains an extra term of order logIbgq||v). Note, however, that the terEthI:(h) can be
significantly larger than the teriin( fq), since the mixture hypothesig = En.qh can be far more
complex than a single hypothedis A more detailed numerical comparison of the two bounds is
left for future work. We comment that a similar bound to (10), based on the the margin loss, was
established by Langford et al. (2001) for a mixture of classifiers.

Finally, as mentioned following Theorem 10, these data-dependent bounds can be used in order to
select an optimal posterior distributian While D(q||v) is convex inqg, this is not the case for
v/D(q|lv). However, one may formulate the optimization problem as a constrained optimization
problem of the form

min D(q|v)

gen

A~

s.t. L(fg) <a,

for some parametexrwhich can be optimized in order to obtain the best bounﬁ(f&) iS a convex

function ofqg (for example, if a quadratic loss is used), we obtain a convex programming problem
which can be solved using standard approaches (e.g., Boyd and Vandenberghe, 2002). We note that
this approach is very similar to the so-call®éximum entropy discriminatiqeroposed by Jaakkola

et al. (1999). Finally, if’(y, fy(x)) is convex ing, we may use Jensen’s inequality to upper bound
L(fq) = L({a,h)) by y;qjL(h)). In the latter case, McAllester (2003) has shown that an exact
solution in the form of a Gibbs distribution can be obtained. This solution may in principle be used

as a starting point for numerical optimization algorithms for solving the current problem.

6.2 Norm-Based Constraints

In Section 6.1 we used an entropic term to constrain the distributjoakative to some prior distri-
butionp. In many cases we do not have prior information provided in terms of a pritmstead,

we may believe that sparser solutions are more appropriate, which in principle would require us to
use a constraint of the forifg||, with p close to zero. While our results below do not hold for the
casep = 0, they indicate in principle how to take into account other types of norms. Moreover, it

is not hard to use our approach to derive bounds for support vector machines, in which case we can
replace the; constrainty ; g; = 1 by thel, constraint.

We begin with the simple case whegég) = (1/2)||q||3, namely thel, norm is used. In this case,
we simplify the notation by usingiq|| = [|q|2. It is then easy to see thgt(z) = (1/2)||z||?. A
simple calculation yields

n

2 n
Eog’ ((A/n),;oihoq)) - %;nhwn?

Substituting this result in (4), and minimizing overwe find that

ol < J Gl (%inmw).

Using Theorem 10, and Jensen’s inequaityX < /E[X], X > 0, we obtain the following bound.

Theorem 13 Let the conditions of Theorem 10 hold, and set

6(a) = smax(1/2)|al’. ), Aw = \/ RES3 10X
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Then for all §, g € N, with probability at leastl — 9,

L(fq) < L(fq) + 28 k(G(a)) ﬁr(]q) +M(E(Q)) \/ 4log logs(sg(q)/r?o) +2log(1/5).

Consider next the case of genepeindq such that 1q+1/p=1, pe (1,0). Let p’ = maxp,2)
andd = min(q, 2), and considep-norm regularizatiorgy(q) = %||q||B' and its associated conjugate
functiong*(z), namely
1 . 1 /

9(a) = EIIQIIB’ . 9= allZH& :
Note that ifp < 2 thenq> 2 andq = p' =2, while if p>2thenq< 2, =q,p' = p.
In the present case, the average aveequired in (4) is rather cumbersome, and we resort to using
(6) instead. The Rademacher averaging resulpfoorm regularization is known in the Geometric
theory of Banach spaces (type structure of the Banach space), for example, see Ledoux and Talgrand

(1991), and follows from Khinchine’s inequality. It can also be derived from the general techniques
developed in this work, where we use the following boundigrin (6).

Lemma 14 The following bound is valid,

max1,g-—1 /
uy (1) < T g,
2
Proof Wheng > 2 (implying d = 2), we have thatf*(z+62') = (1/2) (zj |zj + 62 |q> /q. A direct

computation of the second order derivatives required in Lemma 2, and use of the coqditidn
yields

2

gozd (+87) < (a-Dl2+ 07153 |7+ 677"

< (a-1)l|z+86Z||5 Yz+6ZIg 21213
(@-)lZ3,

where the second inequality follows fronoldér’s inequality with the dual paiig/(q— 2),q9/2).

Wheng < 2 (implying ¢ = ), we haveg*(z+62') = (1/9) ¥ j |z + 879 and use the first part of
Lemma 2.

* N ~*(7_ O 407191 _ |z —gZ|9-1
|e|17q£ g*(z+67) —g*(z—62) <oy |z + 67| |z — 67| ”
de 2q J 2q J
R
<oy 240
] q
202
== 79
q 1Zlq

where the inequalityia|4—! — |b|9~| < |a—b|%~! was used in the second inequality. Use of Lemma
2 and the observation that mdxq—1)/q = (q—1)/2 if g > 2, and maxl,q—1)/q = 1/2 if
g < 2 establishes the claim. O
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From (4) we obtain a bound on the Rademacher complexibyof

< 5 (1) g oo
_ Capr-1a [ 5 ihexo1d . 11
-2 (5 ool ) (1)

whereCq = (1—1/¢)¥9 - max(1,q—1)/%. Combining (11) with Theorem 10, and using Jensen’s
inequality E[XY/9] < (E[X])l/q/, we obtain the following result.

Theorem 15 Let the conditions of Theorem 10 hold, and set

n 1/d
6(a) = smax((1/p) allF g0) AH,q:[(1/n>Esziuh<>q>ua’] .

Then for all §, g € N, with probability at leastl — 9,

5(a)) (6(9) " :
2ot K (O@) Q@) | s \/4Iog log,(s5(d)/go) +210g(1/8) -

L(fq) < L(fq) + Lo n

where G = (1 1/q)Y9 *max(q— 1,1)¥9.

6.3 Oracle Inequalities

Up to this point we have obtained data-dependent bounds which can be used for the purpose of
model selection. In general, one is interested in knowing how the empirical estimator compares to
the best possible mixture estimator, which can only be known if the underlying probability distribu-
tion is known. Such bounds are referred tooaacle inequalities Let § be an empirically derived
posterior distribution. In particular we establish an oracle inequality which relates tHg [gsh))

to the minimal loss infen L({(q,h)).

We recall from Theorem 10 that with probability at least & for all fq, g € I,
L(fq) <L(fg)+2a(H,0,3), (12)

where

Ba(H 0.5 ~ 20(6(a) V(@) + M(glq) | 120108 D0)/00) + 21061/0)

As in structural risk minimization (Vapnik, 1998), we seldbased on a complexity regularization
criterion
g = argmin{L(fq) +An(H ,9,3)} .
gen
From (12), with probability at least-15/2
L(fa) < L(fq) +2n(H,8,8/2).
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By the optimality of the selection df
L(fq) +An(H,8,8/2) < L(fg) +Ln(H . 5,5/2),

whereq is an arbitrary hypothesis that does not depend on the data. We may apply Theorem 3 to
—L(fg) and obtain that with probability greater thar-5/2

2log(2/d)

L(fq) < L(fg) +M(g(@)) —— < L(fg) +4n(H .q,5/2).
Note that in this case the function cldssconsists of the single elemefy, so that the term leading

to the Rademacher complexity vanishes. Therefore, with probability at leadt 1

L(fq) +An(H ,8,8/2) < L(fg) +24n(H ,q,5/2).

Sinceq is arbitrary, we obtain the following result.

Theorem 16 Under the same conditions as in Theorem 10, with probability at lkash

L(fq) < inf [L(fq) +28n(H . q,5/2)]

Note that ifAn(H ,q,8/2) can be uniformly bounded, sapH ,q,5/2) < c,(8) independently of
g, we find that with probability at least-15, L(fq) < infqen L(fq) +cn(9).

6.4 Binary Classification

So far we have mainly been concerned with regression. The case of binary classification can easily
be incorporated into the present framework. 8et {(X;,Y;)}{. ; be a sample wheng§ € X andY; €
{—1,+1}. Consider a soft classifief(x) and define the 6 1 loss a¥p_1(Y, f(x)) = [ (yf(x) <0).

Let @(yf(x)) be a Lipschitz function with Lipschitz constatF ), which dominates the 8 1 loss,
namelyZo_1(y, f(X)) < @yf(x)). Itis then not hard to conclude that under the same conditions as
those in Theorem 8 we find that for dlle F , with probability at least 1- 5,

PLY f(X) < 0} < En@(Y f(X)) + 2 (F )Ry(F ) + M(F ) 72'09511/5),

One can then proceed to develop data-dependent bounds for this problem along the lines of Theorem
10. Note that several possible choices@of (x),y) have been proposed in the literature. A proof of

the Bayes consistency of algorithms based on these dominating functions can be found in work by
Lugosi and Vayatis (2002), Mannor et al. (2002) and Zhang (2003). An extension to multi-category
classification has recently been proposed by Desyatnikov and Meir (2003).

7. Conclusion

We have developed a general procedure for establishing data-dependent bounds for mixture based
approaches to regression and classification. As discussed in Section 1, Bayesian mixture approaches
possess several desirable attributes from a frequentist perspective. However, in opposition to many

Bayesian approaches, our results hold independently of the correctness of the model assumptions.
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The approach pursued can effectively use many forms of prior knowledge, which may be incorpo-
rated through the selection of appropriate constraint functions. Additionally, the results apply to
general mixture based approaches such as Bagging and Boosting. At a technical level, we have re-
placed the boundedness assumptions, prevalent in the Learning Theory literature, with more general
moment constraint conditions.

Several open issues remain for future research. First, it would be be interesting to combine the
current approach with recent methods based on local Rademacher complexities (e.g., Bartlett et al.,
2002a), which are sometimes able to attain faster convergence rates. Second, a particularly inter-
esting question relates to using the data itself to learn an appropriate constraint function, or perhaps
several constraint functions. Finally, it is clearly important to conduct careful numerical studies of
the bounds. Related work by Seeger (2002) demonstrated the tightness of similar bounds in the con-
text of Gaussian processes, and their relevance to real-world problems. Preliminary studies indicate
similar behavior for our bounds, but a systematic numerical investigation still needs to be done.

In this paper we have been concerned solely with mixture based Bayesian solutions. As pointed out
in Section 1, general optimal Bayesian solutions are not always of a mixture form. In this context, it
would be particularly interesting to establish finite sample bounds for optimal Bayesian procedures,
which, under appropriate conditions, would provide tight upper bounds on the performaacg of
learning algorithm, and not only those based on selecting hypotheses from some class of hypotheses.

Given the suggested connections established in this work between the frequentist and Bayesian
approaches, we would like to conclude with the following quote from Lehmann and Casella (1998).

“The strengths of combining the Bayesian and frequentist approaches are
evident. The Bayes approach provides a clear methodology for construct-
ing estimators, while the frequentist approach provides the methodology for
evaluation.”

Although we have restricted ourselves to Bayesi@rture algorithms, which are not necessarily
optimal in general, we hope that this paper has made some steps towards strengthening this claim.

AcknowledgmentsThe work of R.M. was partially supported by the Technion V.P.R. fund for the
promotion of sponsored research. Support from the Ollendorff center of the department of Electrical
Engineering at the Technion is also acknowledged.

Appendix A. Examples of Convex Functions and their Conjugates

We provide several examples of convex functions and their conjugates. Further examples can be
found in Boyd and Vandenberghe (2002) and Zhang (2002b).

We useg(u) to denote a convex function with variable while g*(v) denotes its conjugate with
dual variablev. The/, norm of a vectou is given by||ul|, = (F; \uj\p)l/p.

e LetK be a symmetric positive-definite matrix. Then

(v,K~1v).

NI =

o) = S{u.Ku) § g(v)=
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e Letp,p,q,qd > 1 be real numbers obeying g+ 1/q=1and ¥p'+1/qd = 1. Then

1, . 1, .
Q(U)ZEHUHB : g(V)=aHVHS-

e Assumeu; > 0 andy; > 0. Then

ou) = Yulog gV =T wexs(vi)
] J

Appendix B. Proof of Theorem 3

We first prove the following lemma.

Lemma 17 Consider real-valued functions:® x X; — R, i = 1,2. Define ¢x1,X2) = Supyco(C1(0,X1) +
c2(0,%2)). Let X% € X; and % € X, be two independent random variables. Then

log Ex, exp(Ex,c(X1,X2)) < Ex, x,C(X1,X2) +10gEx, gugcosr(Z(cl(e, X1)).
S
Proof Let

C/(Xl) = Ex2 [C(Xl,XQ) — SU[I)Q(G,Xz)].
FISC)

Itis clear that

inf ¢1(0,X1) < ¢/(X1) <supcy(6,Xq).
6cO 0cO

Therefore using Jensen’s inequality and symmetrization, we obtain

@)
Ex, exp{¢/(X0) — Exy¢ (X)) } = Ex,x exp{c' (%) — ¢ (X))}

(2 Exl,xé [exp(2c (X)) + exp(—2c (X1))]

9 Ex, coshi2c/(X1))

< EXl supcosf‘(ch(e, Xl))7
6co

where(a) and(b) used Jensen’s inequality afd) applied a symmetrization argument. O

LetZ" ={Z,...,Z,}, Z € Z, be independently drawn from a distributi® and letF be a class
of functions fromZ to R. Set

Ar (Z") = sup [nEzf(Z) - if(zi)] .

feF

Lemma 18 For all positiveA

logEzn exp{AAg (Z")} < NEznAg (Z") + nlogEz supcosh2A(f(Z2)).
feF
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Proof The lemma follows by recursively applying Lemma 17 koen,n—1,...,1, and identifying
the functionf with the paramete®. For each value df we set

Xl = Zk X Xz = {Zk+1, . ,Zn},
where we assume th@f,, ..., Zc 1} are fixed. Moreover, set

Cl(e, ) = —)\f(Zk)
C2(8, X2) = NAEz f(Z EkAf (Z),

and note that(Xy, X2) = Mg (Z"). We simplify the notation by using| = {Z,...,Z} for any
positive integerk andl, | > k. From Lemma 17 we have (for flxdf)

logEz, exp{ Ez, MAr (Z”)} < EznAAg (Z") + logEz supcosh(2\ f(Z))
feF
which, upon exponentiation, is rewritten as
Ez exp{EzQHAAF (Z”)} < exp{Ez{g)\AF (Z") +logEz supcosh(ZAf(Z))} .
feF

Taking expectations with respt—:ctl@1 on both sides of the inequality, followed by applying the
logarithm function, we find that

E_n A

logExe s ™" @)

< logE - 1eEZ")‘AF( )+Iog Ez supcosh(2Af(Z)). (13)
feF

Summing both sides of (13) ovkr=n,n—1,...,1 we obtain
log Ez”é’\AF ) +log = L FnME @) | JogEy, EogMr (2)

En M (20)

< logE- \FzMAe (20 +IogEZn 2€ A1 +.--+loge™ EogMe (Z7)

+ nlogEz supcosh(2Af(2)).
feF

Upon subtracting identical terms from both sides of the inequality we find that

log EzneAAF ) < AEznAr (Z") + nlogEz supcosh(2Af(Z))
feF

which establishes the claim. O

Let X" = {Xy,...,Xn}, and set
+ ns}.

0=P< sup|nExf(X f(X)| > Exnsup|nEx f(X f(X
{fer[ X 21 ] X fer[ X Zi
From Chernoff’s inequalityP{X > x} < inf, {exp(—Ax)Eexp(Ax) : A > 0}, we have for all non-
negativea

5< ef)\EXn/:\F (X")*A”SEXne?‘AF (X"
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Taking logarithms of both sides of the inequality, we find that
logd < —AExnAg (X") — Ane + logExneMF (X

(@
< —Ane + nlogEx supcosh(2A f (X))
feF

(b)
< —Ane+ 27\2M2,

where Lemma 18 was used (a) and the assumption of Theorem 3 was use(bin

SinceA > 0 is arbitrary, we conclude that

N | R ne2
< — _ ___c
logd < )I\g]; [2)\ M Ans] Ve
We thus obtain with probability of at least-19,
£ - 2log(1
SUp{EF(X) — Ef(X)} < Exn Sup{EF(X) = Enf (X)) + My / 2290 -
feF feF n
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