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Python package for causal discovery based on LiNGAM
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Abstract

Causal discovery is a methodology for learning causal graphs from data, and LiNGAM
is a well-known model for causal discovery. This paper describes an open-source Python
package for causal discovery based on LiNGAM. The package implements various LiNGAM
methods under different settings like time series cases, multiple-group cases, mixed data
cases, and hidden common cause cases, in addition to evaluation of statistical reliability
and model assumptions. The source code is freely available under the MIT license at
https://github.com/cdt15/lingam.
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1. Introduction

Statistical causal inference learns causal quantities from data (Imbens and Rubin, 2015;
Pearl, 2000). A common procedure for this is as follows: Users first specify the causal
quantity to be estimated, e.g., the intervention effect of a variable on another variable.
Second, they draw the causal graph based on background knowledge. Then, they derive
variables (if any) that should be used to identify the quantity of interest based on graphical
criteria, such as back-door and front-door criterion, and their generalizations (Pearl, 1995;
Shpitser and Pearl, 2008; Bhattacharya et al., 2020; Jung et al., 2020).

A fundamental step of the aforementioned procedure is to draw the causal graph based
on background knowledge. However, it is often the case that background knowledge is not
enough to draw the causal graph. Causal discovery (Spirtes et al., 1993; Pearl, 2019) is
a methodology for inferring causal graphs in data-driven ways; it aims to help users draw
causal graphs by combining data with prior knowledge.

A classic approach for causal discovery is to use conditional independence of variables for
inferring the underlying causal graph (Spirtes et al., 1993; Pearl, 2000). This approach, in
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principle, does not make specific assumptions on the functional forms of the causal relations
of variables or distributions of variables; it only infers a set of equivalent models and is not
able to estimate causal directions for most cases.

In contrast, a recent approach (Shimizu, 2014; Zhang and Hyvärinen, 2016; Shimizu,
2022) makes some assumptions on the functional forms or/and distributions of variables
to address this limitation. The linear non-Gaussian acyclic model (Shimizu et al., 2006),
abbreviated as LiNGAM, is the most well-known example, where the error variables as-
sumedly follow non-Gaussian continuous distributions, but at most one error variable may
be Gaussian. The assumption of non-Gaussian errors enables examining the independence
of error variables, unlike that of Gaussian errors. This LiNGAM approach achieves better
identification results and is capable of uniquely estimating causal directions in much more
cases than the classic approach based on conditional independence. This feature of identifi-
ability has attracted much attention of the research community (Drton and Maathuis, 2017;
Glymour et al., 2019; Peters et al., 2017; Shimizu, 2014, 2022) and has led to numerous
applications of the methodology, for example, in epidemiology (Rosenström et al., 2012),
economics (Moneta et al., 2013), neuroscience (Mills-Finnerty et al., 2014), and materials
science (Campomanes et al., 2014; Liu et al., 2021). See https://www.shimizulab.org/

lingam/lingampapers for a list of papers on the methodology and its applications.

Representative causal discovery packages are TETRAD (Scheines et al., 1998; Ramsey
et al., 2020), pcalg (Kalisch et al., 2012) and bnlearn (Scutari and Denis, 2021). These
packages are rich in classic methods based on conditional independence including constraint-
based methods such as PC and FCI (Spirtes and Glymour, 1991; Spirtes et al., 1995) and
greedy score-based methods such as GES (Chickering, 2002) and NOTEARS (Zheng et al.,
2018), whereas TETRAD and pcalg only provide a basic method for the LiNGAM approach
(Shimizu et al., 2006) based on independent component analysis (ICA) (Hyvärinen et al.,
2001). Causal Discovery Toolbox (Kalainathan et al., 2020) gives a Python front end to
perform methods of pcalg and bnlearn written in R, but only offers the basic ICA-based
method for LiNGAM (Shimizu et al., 2006). Further, their implementation of a nonlinear
causal discovery method based on a similar idea of LiNGAM (Hoyer et al., 2009) is limited to
two variable cases. Tigramite (https://github.com/jakobrunge/tigramite) offers time
series causal discovery methods based on conditional independence (Gerhardus and Runge,
2020), but does not exploit additional information on the functional forms of the causal
relations of variables or distributions of variables, unlike LiNGAM-type methods.

Thus, in this paper, we present a Python package for performing various LiNGAM-
type methods including time series cases (Hyvärinen et al., 2010; Kawahara et al., 2011),
multiple-group cases (Shimizu, 2012; Kadowaki et al., 2013), mixed data cases (Zeng et al.,
2022), hidden common cause cases (Maeda and Shimizu, 2020; Zeng et al., 2021), and
(multivariate) nonlinear cases (Peters et al., 2014). The package covers most of the major
LiNGAM-type methods already used in application papers and relevant extensions. Users
can choose suitable methods depending on what they assume based on their background
knowledge. We plan to extend it further and encourage others to join the development.
Moreover, the package offers additional functionalities including evaluation of statistical
reliability based on bootstrapping (Komatsu et al., 2010) and model evaluation based on
the magnitude of error independence (Entner and Hoyer, 2011; Tashiro et al., 2014).
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Figure 1: Left: SHD (Structural Hamming Distance), Right: Runtime.

2. Available models and estimation algorithms

This section gives a brief description of each of the LiNGAM methods available in this
package. See the online documentation (https://lingam.readthedocs.io/en/latest/)
for more details.

The most basic LiNGAM model (Shimizu et al., 2006) assumes that their causal relations
are acyclic, with no hidden common causes, linearity, and non-Gaussian errors. The basic
LiNGAM model can be estimated in different ways. This package implements two major
algorithms: the original LiNGAM discovery algorithm based on ICA (Shimizu et al., 2006)
and a direct method called DirectLiNGAM (Shimizu et al., 2011). The package further
offers utilities to compute total effects between observed variables and their direct effects,
drawing causal graphs using Graphviz, computing bootstrap probabilities of directed paths
and edges, and incorporating prior knowledge on topological causal orders in the estimation
by DirectLiNGAM. It further enables model evaluation by examining the independence of
errors. Two extensions of the basic LiNGAM models are available in our package for multi-
group analysis. First, Shimizu (2012) jointly estimates multiple LiNGAMs using multiple
datasets from multiple sources by constraining their topological causal orders to be identi-
cal. This would enable a more accurate estimation of the LiNGAMs than estimating them
separately, given the prior knowledge that they share is a topological causal order. Second,
Kadowaki et al. (2013) consider performing causal discovery on paired samples and propose
an estimation method for learning causal structures in longitudinal data that collects sam-
ples over time. Their algorithm can analyze causal structures, including topological causal
orders, that may change over time.

We compared the accuracy and runtime of our implementation of the ICA-based LiNGAM
algorithm with those of an existing package, pcalg, for different numbers of variables. We
also tested our implementation of DirectLiNGAM for comparison. The python code used
to generate artificial data in our experiments is available at https://github.com/cdt15/

lingam/blob/master/examples/data/GenerateDatasets.ipynb. Fig. 1 shows that our
implementation of DirectLiNGAM was more accurate than our and pcalg implementations
of ICA-based LiNGAM. Our implementation of ICA-based LiNGAM was faster than its
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pcalg version, wheareas DirectLiNGAM was slower than our and pcalg implementations of
ICA-based LiNGAM.

The package further offers two time series extensions of the basic LiNGAM: VAR-
LiNGAM (Hyvärinen et al., 2010) combines it with vector autoregressive models (VAR),
and VARMA-LiNGAM (Kawahara et al., 2011) does the same with vector autoregressive
moving average models (VARMA). The package also provides a mixed date extension of
the basic LiNGAM: Linear Mixed (LiM) causal discovery algorithm extends LiNGAM to
handle the mixed data that consists of both continuous and discrete variables (Zeng et al.,
2022). Further, our package can perform a nonlinear causal discovery RESIT (Peters et al.,
2014) assuming a nonlinear additive noise model with acyclicity and no hidden common
causes (Hoyer et al., 2009). Users can use a nonlinear regression from those implemented
in scikit-learn (Pedregosa et al., 2011).

Another important extension is LiNGAM with hidden common causes or latent factors
(Hoyer et al., 2008; Zeng et al., 2021). We implemented the RCD algorithm (Maeda and
Shimizu, 2020) and CAM-UV algorithm (Maeda and Shimizu, 2021). The RCD algorithm
allows the existence of hidden common causes and outputs a causal graph, where a bi-
directed arc indicates the pair of variables that have the same hidden common causes and
a directed arrow indicates the causal direction of a pair of observed variables that are not
affected by the same hidden common causes. CAM-UV is its nonlinear variant and assumes
the structural equations additive in the observed variables and errors. We also implemented
the Multi-Domain LiNGAM algorithm for latent factors (MD-LiNA) (Zeng et al., 2021).
Given the observed measurement data, MD-LiNA allows to locate the latent factors in
addition to uncovering the causal structure between such latent factors of interests.

3. Design, API and future development

To facilitate application by machine learning users, we designed the model with the fit
function, similar to scikit-learn. The standard flow is to call the fit method shown below to
build the model after the model instance is created.

model = lingam.DirectLiNGAM ()

model.fit(X)

After model building, the graph is returned as an adjacency matrix.
We plan to continue further development of the package. We also encourage others to

join the project. It is easy to extend the model by following the Contribution Guide in
the online documentation and further referring to other models. The Contribution Guide
includes the code style and the ways to check the format, write the documentation, perform
unit tests, and create a pull request. The package would benefit applied researchers and
practitioners in enjoying the results of recent developments in causal discovery and deriving
better causal conclusions based on domain knowledge and data.
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