
Journal of Machine Learning Research 20 (2019) 1-5 Submitted 6/18; Revised 8/19; Published 8/19

ORCA: A Matlab/Octave Toolbox for Ordinal Regression

Javier Sánchez-Monedero sanchez-monederoj@cardiff.ac.uk
School of Journalism, Media and Culture
Cardiff University
Cardiff CF10 1FS, Wales, United Kingdom

Pedro A. Gutiérrez pagutierrez@uco.es
Department of Computer Science and Numerical Analysis
University of Córdoba
Córdoba, 14071, Spain

Maŕıa Pérez-Ortiz maria.perez@ucl.ac.uk

Department of Computer Science

University College London

London WC1E 6EA, United Kingdom

Editor: Cheng Soon Ong

Abstract

Ordinal regression, also named ordinal classification, studies classification problems where
there exist a natural order between class labels. This structured order of the labels is
crucial in all steps of the learning process in order to take full advantage of the data.

ORCA (Ordinal Regression and Classification Algorithms) is a Matlab/Octave frame-
work that implements and integrates different ordinal classification algorithms and specif-
ically designed performance metrics. The framework simplifies the task of experimental
comparison to a great extent, allowing the user to: (i) describe experiments by simple
configuration files; (ii) automatically run different data partitions; (iii) parallelize the ex-
ecutions; (iv) generate a variety of performance reports and (v) include new algorithms
by using its intuitive interface. Source code, binaries, documentation, descriptions and
links to data sets and tutorials (including examples of educational purpose) are available
at https://github.com/ayrna/orca.

Keywords: Ordinal regression, ordinal classification, Matlab, Octave, threshold models

1. Introduction

The terms ordinal regression and ordinal classification refer to those supervised learning
problems where labels show an ordinal arrangement (Gutiérrez et al., 2016), e.g. in an
age estimation problem where the categories are: {baby, child, teenager, adult}. The aim
in this case is not just to improve standard accuracy, but to reduce the magnitude of
misclassification errors, in such a way that the order relation between labels is considered
during model construction and evaluation. In the problem of age estimation, if true label is
baby, predicted label adult should entail a more severe misclassification error than predicted
label child. Exploiting the ordinal disposition of the labels has proven to yield better
performance than simply treating them as nominal categories.

c©2019 Javier Sánchez-Monedero, Pedro A. Gutiérrez, and Maŕıa Pérez-Ortiz.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v20/18-349.html.

https://github.com/ayrna/orca
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v20/18-349.html

Sánchez-Monedero, Gutiérrez, and Pérez-Ortiz

In this paper, we introduce ORCA (Ordinal Regression and Classification Algorithms),
a Matlab/Octave framework that gathers an extensive collection of recent ordinal machine
learning methods and ordinal performance metrics. It also presents a general framework
to automate experiments that can be used both from an API or by describing experiments
with configuration files. Online documentation includes extensive tutorials to introduce
users to ordinal classification and the pipeline of the experimental framework. We also
provide several small data sets for code testing purposes and a list of 44 ordinal data sets
of different characteristics that can be used for algorithm comparison.

There are some alternative software toolboxes that implement certain features for ordinal
regression. Those include: i) mord1 in Python, ii) ordinal2 in R, iii) vgam3 in R, iv) bmrm4

in R and v) ocapis5 in Scala. mord and ordinal focus on well-established simple statistical
methods (i.e. ordinal logistic regression, which is also included in our toolbox) rather than
on novel machine learning approaches. vgam and bmrm focus on vector generalised linear
and additive models and regularised empirical minimisation respectively, having a setting to
deal with ordinal classification problems. Finally, ocapis implements 4 of the 15 methods
that ORCA includes but lacks the experimental and parallelisation framework.

2. Architecture and Features

The main features can be grouped in the following categories:

Methods. The Algorithm class defines an API including different methods such as fit

and predict, which process a pair of train and test partitions for a specific hyper-parameter
configuration of the selected classifier. Adding a new method is easy, the user only needs
to add a new class implementing the fit and predict methods.

Metrics. All metrics implement a calculateMetric method, which can be run using the
true and predicted labels or the confusion matrix.

Automatic experiment running. ORCA automates the process of running one or many
methods for a set of data sets. It processes every experiment by fitting a model with
the training data (including model selection through cross-validation), evaluating the test
error and creating performance reports of all the performance metrics, training time and
hyper-parameter values.

Experiment configuration. ORCA can be used by directly interacting with the API or by
describing experiments with configuration files in INI format. ORCA checks the consistency
of these files by analysing the corresponding algorithm class, in such a way that, if a new
method is developed, the researcher does not need to modify the INI parser.

Experiment parallelisation. When presenting new classifier proposals, researchers typ-
ically run several methods over a set of partitions. For example, if we perform 30 repetitions
of a hold-out design for 10 data sets, we need at least 300 calls to the fit and predict

1. https://pythonhosted.org/mord/
2. https://cran.r-project.org/web/packages/ordinal/index.html
3. https://cran.r-project.org/web/packages/VGAM/index.html
4. https://cran.r-project.org/web/packages/bmrm/index.html
5. https://arxiv.org/abs/1810.09733

2

https://pythonhosted.org/mord/
https://cran.r-project.org/web/packages/ordinal/index.html
https://cran.r-project.org/web/packages/VGAM/index.html
https://cran.r-project.org/web/packages/bmrm/index.html
https://arxiv.org/abs/1810.09733

ORCA: A Matlab/Octave Toolbox for Ordinal Regression

Method Reference

Ordinal methods

Support vector regression (SVR) Gutiérrez et al. (2016)
Cost-sensitive support vector classifier (CSSVC) Hsu and Lin (2002)
Support vector machine with ordered partition (SVMOP) Waegeman and Boullart (2009)
Ordinal extreme learning machine (ELMOP) Deng et al. (2010)
Linear logistic regression for ordinal data (POM) McCullagh (1980)
Ordinal SVM with explicit constraints (SVOREX) Chu and Keerthi (2007)
Ordinal SVM with implicit constraints (SVORIM) Chu and Keerthi (2007)
Linear SVORIM Chu and Keerthi (2007)
Kernel discriminant analysis for ordinal regression (KDLOR) Sun et al. (2010)
Neural network based on the POM (NNPOM) Mathieson (1996)
Neural network with ordered partitions (NNOP) Cheng et al. (2008)
Reduction applied to SVM (REDSVM) Lin and Li (2012)
Ordinal regression boosting (ORBoost) Lin and Li (2006)
Ordinal projection based ensemble (OPBE) Pérez-Ortiz et al. (2014)

Partial order methods

Hierarchical Partial Order Label Decomposition (HPOLD) Sánchez-Monedero et al. (2018)

Nominal methods

Multi-class nominal SVM with 1vs1 formulation (SVC1V1) Hsu and Lin (2002)
Multi-class nominal SVM with 1vsAll formulation (SVC1VA) Hsu and Lin (2002)
Matlab wrapper for LIBLINEAR (LIBLINEAR) Fan et al. (2008)

Table 1: Ordinal and nominal methods available in ORCA.

functions, which can be run in parallel. ORCA exploits this by using Matlab and Octave par-
allelisation toolboxes. In addition, a set of scripts is provided to perform the parallelisation
in the HTCondor6 distributed computing environment.

3. Implemented Methods and Performance Metrics

ORCA collects an extensive list of ordinal classification methods including näıve approaches,
ordinal binary decompositions and threshold models (see Table 1). Further details of the
methods can be found in Gutiérrez et al. (2016), together with running time of the algo-
rithms. From this analysis, it was concluded that ELMOP, SVORLin and POM are the
best option if computational cost is a priority. The training time of neural network methods
(NNPOM and NNOP) and GPOR is generally the highest. This cost can be assumed for
GPOR, since it obtains very good performance for balanced ordinal data sets, while neu-
ral network-based methods are generally beaten by the ordinal SVM variants. Concerning
scalability, the experimental setup in Gutiérrez et al. (2016) also included some relatively
large data sets, so the practitioner could check the time it took to train one of those models
with the ORCA framework. In general, linear models such as POM and SVORLin perform
very well in these scenarios where there is plenty of data while still having a reasonably low

6. http://research.cs.wisc.edu/htcondor/

3

http://research.cs.wisc.edu/htcondor/

Sánchez-Monedero, Gutiérrez, and Pérez-Ortiz

running time (e.g. around 10 seconds for cross-validating, training and testing on a data
set of almost 22.000 patterns).

ORCA provides a collection of performance metrics, which can also be used for hyper-
parameter selection. Given that ordinal problems usually show a skewed class distribution
specific imbalance classification metrics are also included in the framework. For more details,
we refer the reader to the project documentation and ordinal metrics review in (Cruz-
Ramı́rez et al., 2014).

4. Sample Code

The ORCA API includes methods to directly configure, train and test an ordinal classifier:

% Create an Algorithm object

addpath(’src/Algorithms/’)

kdlorAlgorithm = KDLOR ();

% Load data set

load exampledata /1-holdout/toy/matlab/train_toy .0

load exampledata /1-holdout/toy/matlab/test_toy .0

train.patterns = train_toy (:,1:(size(train_toy ,2) -1));

train.targets = train_toy(:,size(train_toy ,2));

test.patterns = test_toy (: ,1:(size(test_toy ,2) -1));

test.targets = test_toy(:,size(test_toy ,2));

% Fit the model and predict with test data

result = kdlorAlgorithm.fitpredict(train ,test);

% Evaluate performance metrics

addpath(’src/Measures/’)

CCR.calculateMetric(result.predictedTest ,test.targets)

MAE.calculateMetric(result.predictedTest ,test.targets)

Moreover, as previously discussed, ORCA can be used to run a batch of experiments
specified in an INI file:

Utilities.runExperiments(’tutorial/config -files/pom.ini’)

Acknowledgments

We would like to thank Professor Peter Tiňo and the three anonymous reviewers for their
valuable feedback. Javier Sánchez-Monedero and Maŕıa Pérez-Ortiz started the develop-
ment of this software while working at the University of Córdoba (Spain). This work has
been subsidized by the projects TIN2017-85887-C2-1-P and TIN2017-90567-REDT of the
Spanish Ministry of Economy and Competitiveness (MINECO) and EU FEDER funds.

References

Jianlin Cheng, Zheng Wang, and Gianluca Pollastri. A neural network approach to ordinal
regression. In IEEE International Joint Conference on Neural Networks, pages 1279–
1284. IEEE Press, 2008.

Wei Chu and S. Sathiya Keerthi. Support Vector Ordinal Regression. Neural Computation,
19(3):792–815, 2007.

4

ORCA: A Matlab/Octave Toolbox for Ordinal Regression

Manuel Cruz-Ramı́rez, César Hervás-Mart́ınez, Javier Sánchez-Monedero, and Pedro A.
Gutiérrez. Metrics to guide a multi-objective evolutionary algorithm for ordinal classifi-
cation. Neurocomputing, 135:21–31, July 2014.

Wan-Yu Deng, Qing-Hua Zheng, Shiguo Lian, Lin Chen, and Xin Wang. Ordinal extreme
learning machine. Neurocomputing, 74(1–3):447–456, 2010.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. LIB-
LINEAR: A library for large linear classification. Journal of Machine Learning Research,
9:1871–1874, 2008.

Pedro A. Gutiérrez, Maŕıa Pérez-Ortiz, Javier Sánchez-Monedero, Francisco Fernandez-
Navarro, and César Hervás-Mart́ınez. Ordinal regression methods: survey and experi-
mental study. IEEE Transactions on Knowledge and Data Engineering, 28(1):127–146,
2016.

Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods for multi-class support vector
machines. IEEE Transaction on Neural Networks, 13(2):415–425, 2002.

Hsuan-Tien Lin and Ling Li. Large-margin thresholded ensembles for ordinal regression:
Theory and practice. In José L. Balcázar, Philip M. Long, and Frank Stephan, editors,
International Conference on Algorithmic Learning Theory, volume 4264, pages 319–333.
Springer-Verlag, October 2006.

Hsuan-Tien Lin and Ling Li. Reduction from cost-sensitive ordinal ranking to weighted
binary classification. Neural Computation, 24(5):1329–1367, 2012.

Mark J. Mathieson. Ordinal models for neural networks. In J. Moody A.-P. N. Refenes, Y.
Abu-Mostafa and A. Weigend, editors, International Conference on Neural Networks in
the Capital Markets, pages 523–536. World Scientific, 1996.

Peter McCullagh. Regression models for ordinal data. Journal of the Royal Statistical
Society. Series B (Methodological), 42(2):109–142, 1980.

Maŕıa Pérez-Ortiz, Pedro A. Gutiérrez, and César Hervás-Mart́ınez. Projection-based en-
semble learning for ordinal regression. IEEE Transactions on Cybernetics, 44(5):681–694,
May 2014.

Javier Sánchez-Monedero, Maŕıa Pérez-Ortiz, Aurora Saez, Pedro A. Gutiérrez, and César
Hervás-Mart́ınez. Partial order label decomposition approaches for melanoma diagnosis.
Applied Soft Computing, 64:341–355, March 2018.

Bing-Yu Sun, Jiuyong Li, Desheng Dash Wu, Xiao-Ming Zhang, and Wen-Bo Li. Kernel
discriminant learning for ordinal regression. IEEE Transactions on Knowledge and Data
Engineering, 22(6):906–910, 2010.

Willem Waegeman and Luc Boullart. An ensemble of weighted support vector machines for
ordinal regression. International Journal of Computer Systems Science and Engineering,
3(1):47–51, 2009.

5

	Introduction
	Architecture and Features
	Implemented Methods and Performance Metrics
	Sample Code

