
Journal of Machine Learning Research 13 (2012) 2995-2998 Submitted 9/11; Revised 7/12; Published 10/12

Oger: Modular Learning Architectures For Large-Scale Sequential
Processing

David Verstraeten DAVID .VERSTRAETEN@UGENT.BE

Benjamin Schrauwen BENJAMIN.SCHRAUWEN@UGENT.BE

Sander Dieleman SANDER.DIELEMAN @UGENT.BE

Philemon Brakel PHILEMON.BRAKEL@UGENT.BE

Pieter Buteneers PIETER.BUTENEERS@UGENT.BE

Department of Electronics and Information Systems
Ghent University
Ghent, Belgium

Dejan Pecevski DEJAN@IGI .TUGRAZ.AT

Institute for Theoretical Computer Science
Graz University of Technology
Graz, Austria

Editor: Cheng Soon Ong

Abstract
Oger (OrGanic Environment for Reservoir computing) is a Python toolbox for building, train-
ing and evaluating modular learning architectures on largedata sets. It builds on MDP for its
modularity, and adds processing of sequential data sets, gradient descent training, several cross-
validation schemes and parallel parameter optimization methods. Additionally, several learning
algorithms are implemented, such as different reservoir implementations (both sigmoid and spik-
ing), ridge regression, conditional restricted Boltzmannmachine (CRBM) and others, including
GPU accelerated versions. Oger is released under the GNU LGPL, and is available fromhttp:
//organic.elis.ugent.be/oger.
Keywords: Python, modular architectures, sequential processing

1. Introduction

The Oger toolbox originated from the need to rapidly implement, investigate and compare complex
architectures built from state-of-the-art sequential processing algorithms, focused on but not limited
to reservoir computing, and to apply these architectures to large real-worldtasks. Reservoir comput-
ing (RC) is a learning framework (Verstraeten et al., 2007) whereby a random non-linear dynamical
system (usually a recurrent neural network) is left untrained and used as input to a simple learn-
ing algorithm such as linear regression. A number of smaller toolboxes for reservoir computing
are available, written in C++, Java and Matlab.1 However, these are generally focused on specific
implementations of RC (echo state networks or liquid state machines) and offer less flexibility in
creating and evaluating complex architectures.

Rather than contribute yet another toolbox which reimplements many standard algorithms, one
of our design choices for Oger was to incorporate existing packages where possible. Because mod-

1. An overview can be found athttp://organic.elis.ugent.be/software.

c©2012 David Verstraeten, Benjamin Schrauwen, Sander Dieleman, Philemon Brakel, Pieter Buteneers and Dejan Pecevski.



VERSTRAETEN, SCHRAUWEN, DIELEMAN , BRAKEL , BUTENEERS ANDPECEVSKI

Figure 1: A schematic overview of the structure of Oger. The basic processing blocks (nodes) are
combined with methods for constructing and training architectures. These architectures
can then be evaluated in a validation and optimization framework.

ularity was one of the key requirements for Oger, it has been based on thewell known and widely
used Modular Data Processing toolkit (MDP), which provides this modularityin addition to a wide
variety of machine learning algorithms (Zito et al., 2008). Oger uses aNode as its basic building
block: a (optionally trainable) data processing algorithm. These nodes canthen be combined into
an arbitrary feedforward graph structure called aFlow. Much of the error- and type-checking is
abstracted away through the object-oriented interface, such that the developer can focus on imple-
menting the actual algorithm.

Python was chosen as the development language because it is a high-level, cross-platform and
open-source interpreted language offering flexibility and rapid development, while interfaces to op-
timized numerical linear algebra packages such as BLAS are provided through the NumPy package
so that the speed sacrifice remains limited. Mature and feature-complete packages for plotting (mat-
plotlib) and general scientific computing (SciPy) that in many respects come close to commercial
alternatives are available, along with a plethora of smaller libraries providingspecific functions.

2. Features

In this section we describe the main features of Oger and give a usage example.

2.1 Algorithms

MDP implements several standard supervised and unsupervised learningmethods for operating on
stationary inputs, such as principal component analysis, independent component analysis and factor
analysis.2 Oger adds several new methods to this set:

– Several reservoir implementations : a basic reservoir with customizable nonlinear function
and weight topologies, a leaky integrator reservoir, and a GPU-optimized reservoir using CUDA.

– Wrappers for creating spiking reservoirs using PyNN-compatible neural network simulators
(Davison et al., 2008).

– A logistic regression node trainable with different optimizers such as IRLS, conjugate gradi-
ent, BFGS and others.

2. We refer to the MDP websitehttp://mdp-toolkit.sourceforge.net/ for an exhaustive list.

2996



OGER: MODULAR LEARNING ARCHITECTURESFOR LARGE-SCALE SEQUENTIAL PROCESSING

– A conditional restricted Boltzmann machine: a standard RBM with an additionalcontext
vector.

– Several ‘utility’ signal processing methods: a resampling node, a timeshiftnode, a winner-
take-all node, and others.

Additionally, Oger supports backpropagation training using various methods of gradient de-
scent, such as stochastic gradient descent, RPROP and others. Finally,a FreerunFlow allows easy
training and execution of architectures with feedback, for instance for time-series generation tasks
(see the usage example below).

2.2 Validation, Optimization and Parallel Execution

Around the data processing algorithms described above, Oger offers functionality for large-scale
validation and optimization. The validation automates the process of constructingtraining and test
sets, and the actual training and evaluation. Several standard validation schemes are provided (n-
fold, leave-one-out (LOO) cross-validation and others), but this canbe customized (for example, if
a fixed training and test set is defined).

Oger provides an Optimizer class. This class allows both exploration of a certain parame-
ter space and optimization of a vector of parameters according to a loss function (which can be
user-defined, or one of the several provided by Oger). The optimization itself can be done using
grid-searching, or using an interface to any of the algorithms inscipy.optimize or the Python
CMA-ES module (Hansen, 2006). Finally, a variety of error measures and utility classes such as a
ConfusionMatrix are included.

Oger allows two modes of parallel execution, both local (multi-threaded or multi-process) and
on a computing grid. The first mode is inherited from MDP, where the training and execution of
a flow on a data set consisting of different chunks can be done in parallel (if the nodes in the flow
support this). The second mode is the parallel evaluation of parameter points for grid-searching
and CMA-ES (thescipy.optimize functions as yet do not support this). Both modes use runtime
overloading of class methods by their parallel versions, which makes the transition from sequential
to parallel execution very user-friendly and possible using a couple of lines of code (see the usage
example below).

3. Usage Example

As an illustrative example, we construct and train a reservoir and readout setup with output feedback
for generating the Mackey-Glass time-series. We refer to the Oger websiteand the Oger installation
package for more usage examples.

1 from scipy import *
2 import Oger , mdp
3 signals = Oger.datasets.mackey_glass(n_samples=4, sample_len =3000)
4 res = Oger.nodes.LeakyReservoirNode(output_dim=400, reset_states=False)
5 readout = Oger.nodes.RidgeRegressionNode()
6 flow = Oger.nodes.FreerunFlow([res, readout], freerun_steps =300)
7 parameters = {res:{’input_scaling’:arange(.1, 1, .1), ’bias_scaling’:

arange(0, .5, .1), ’leak_rate’:arange(.1,.5,.1)}}
8 internal_params = {readout:{’ridge_param’: 10. ** arange(-4, 0, .5)}}
9 opt = Oger.evaluation.Optimizer(parameters , Oger.utils.nrmse)
10 opt.scheduler = mdp.parallel.ProcessScheduler(n_processes=None)
11 mdp.activate_extension(’parallel’)

2997



VERSTRAETEN, SCHRAUWEN, DIELEMAN , BRAKEL , BUTENEERS ANDPECEVSKI

12 opt.grid_search([[], signals[:-1]], flow , Oger.evaluation.leave_one_out ,
internal_params)

13 opt_flow = opt.get_optimal_flow(verbose=True)
14 opt_flow.train([[], signals[:-1]])
15 y = opt_flow.execute(signals [-1][0])

On line 3, the data set is generated, which in this case consists of four Mackey-Glass time-
series generated from different initial states. In the next two lines, a reservoir node and a linear
readout node trained with ridge regression are created. Line 6 concatenates these nodes into a
FreerunFlow, which provides one-step ahead prediction during trainingand feeds the output back
to the input of the flow during execution. Lines 7 and 8 define a search space for the reservoir
parameters and the regularization constant of the readout node which is optimized separately for
each set of reservoir parameters. On line 9 an Optimizer object is instantiatedwhich will optimize
these parameters using the provided error measure (normalized root meansquared error). Lines
10 and 11 ensure that the optimization is done in parallel, using separate processes. On line 12,
the actual optimization is performed using LOO cross-validation on the four time-series, while for
each fold the regularization constant for the ridge regression is optimized again using LOO cross-
validation. This can take a few minutes. On line 13 the Optimizer is queried to returnthe optimal
flow, which is subsequently trained using all the training signals and applied toan unseen test signal
in lines 14 and 15 respectively.

Acknowledgments

This work was funded by the European Commission FP7 project ORGANIC (FP7-231267). De-
jan Pecevski has been additionally partially supported by the European Union project FP7-506778
(PASCAL2).

References

A.P. Davison, D. Br̈uderle, J. Eppler, J. Kremkow, E. Muller, D. Pecevski, L. Perrinet, and P. Yger.
Pynn: A common interface for neuronal network simulators.Frontiers in Neuroinformatics, 2,
2008.

N. Hansen. The CMA evolution strategy: A comparing review. InTowards a New Evolutionary
Computation, pages 75–102. Springer, 2006.

D. Verstraeten, B. Schrauwen, M. D’Haene, and D. Stroobandt. A unifying comparison of reservoir
computing methods.Neural Networks, 20:391–403, 2007.

T. Zito, N. Wilbert, L. Wiskott, and P. Berkes. Modular toolkit for data processing (mdp): A python
data processing framework.Frontiers in Neuroinformatics, 2, 2008.

2998


